
Backed by Interra’s field proven expertise in developing language analyzers,

the Spice Analyzer offers a best value solution and reduces time-to-market

standard EDA products.

UPF Analyzer performs complete syntax check for all the UPF

commands in

Spice Analyzer

Highlights

 High performance Spice analysis

 Advanced semantic analysis that

performs validity checks on

parameters, resolves models

including mapping of binned

models, and more

 Well-defined, complete set of API

functions that allow access,

modification, and creation of all

possible constructs

 API functions for static

expression and function

evaluation

 Support for incomplete designs

through black box analysis

 Flattening utility to flatten,

partially flatten, and un-flatten

instantiation hierarchy

 Complete support for parameters

and their evaluation in global

and local scope

 Support for exact decompilation

of comments in the design file

 Browser utility for easy

debugging by traversing the

object model

 User controllable parasitic

extraction utility that removes

parasitic elements

Interra’s Spice Analyzer addresses the need of EDA tool developers

who need to add support in their products for a comprehensive

analysis of Spice syntax and semantics. Targeted as a customizable

front-end for applications, such as Simulation, DFM, Timing Closure,

and Power Analysis, the Spice Analyzer is compliant with industry

standard simulators and other tools.

With a common architecture and object model to support different

Spice variants, the analyzer offers several advantages, such as cross

platform decompilation and easy integration with different tools.

The Spice Analyzer’s easy-to-integrate C++ API is intuitive and

comprehensive enabling EDA tool developers to analyze as well as

access designs for information, modify designs, evaluate functions,

perform elaboration, and more.

High Performance Spice Analysis

 Key Advantages

 Extensible architecture to

support various Spice

variants

 Common object model to

ensure easy integration

 Comprehensive coverage of

HSPICE constructs. Supports

HSpice 2009.09

 Complete support for

Spectre

 Comprehensive validation of

syntax and semantics

 Is backed by Interra’s field-

proven expertise in
developing analyzers

Comprehensive Support

Comprehensive support for analysis of Spice netlists,

covering all features and constructs.

C++ Procedural Interface (API)

The Analyzer provides C++ procedural interface to

integrate the Analyzer with C++ and C applications. The

API is comprehensive, covering functions, such as

flattening and parameter evaluation. The API functions

also enable a lot of customization, such as creating and

attaching user-defined attributes to objects and

specifying analysis options.

The intuitive API function names facilitate a short

learning curve and provide better understanding on

how to use the API functions.

Semantic Checking

The Spice Analyzer provides extensive semantic

checking of parameters. The semantic checking

includes elaboration of units, mapping of model

references, resolving hierarchical references to nodes

and devices, checking for loops in parameters and

voltage sources, and correct identification of

parameters even when LHS is not specified.

Dynamic and Extensible Object Model

The in-memory, C++ object model, created after

analysis, is dynamic and extensible. You can use API

functions to add/remove elements, rename elements,

add/remove parameters, and connect/disconnect

nodes. You can modify and extend any object. Further,

the analyzer provides factory classes to create and add

new objects to the object model. For example, a new

user defined device class object may be created and

added to an existing subcircuit. The extended object

model can easily be decomplied as the modified netlist!

Expression and Function Evaluation

You can use the API functions to evaluate static

expression and functions. An expression having

constant values can be evaluated to static constant

value. In addition, you can evaluate expressions that

involve in-built functions and parameters. You can also

determine the expression size in static functions. In

built functions are identified and evaluated statically,

such as sin and exp.

Decompilation

Using the API functions, you can easily decompile any

object in the object model. A complete dump of the

input Spice netlist can be obtained at any hierarchy

level. In addition, the decompilation API functions

automatically decompile the attached comments with

the construct.

Exact Decompilation

You can decompile the Spice netlist ‘as is’, such that

the decompiled output preserves the order of the

statements, the order within the statements, and the

file structure. The spaces, tabs, and new lines are

maintained as well!

Elaboration

API functions are available for partial elaboration of the

object model. You can select a particular hierarchy path

and call API functions to resolve references based on

this path. Further, any subsequent access to the

parameters of device instances in this path would

return the overridden values obtained during

elaboration of this path.

Flattening

Your applications can call API functions for flattening

the instantiation hierarchy and achieve a flattened

structure. During flattening, the Analyzer does a proper

mapping of the terminals and also promotes

parameters.

Black Box Analysis

The Spice Analyzer allows parsing and the creation of

an object model from a design that has missing

subcircuit references or models. The models or

subcircuits are treated as equivalent devices and all

their instances are thus treated as an equivalent device

statement. For example, a subcircuit or model can be

treated as an equivalent resistor, thus making all

instances of the subcircuit behave as either resistor or

instance.

For all missing subcircuits or models, a dummy

container is created with a list of inputs and output

ports inferred through corresponding instantiations.

Parameter Handling

Parameters are effectively handled and resolved

through instance hierarchy in both local and global

scope. You can use API functions to evaluate RHS

having expressions and functions. Further, functions

are available to access, modify, and add parameters.

You can even access list of referenced parameters in a

subcircuit, identify loops in parameter definitions, and

validate parameter values based on a given valid value

set!

Customizable Error Handling

The API functions enable applications to customize the

messages reported by the Spice Analyzer to suit

application-specific needs. Applications can use the API

functions to suppress error messages and warning

messages or change the severity of messages.

The Spice Analyzer Features

Interra Systems, Inc.

1601 S. De Anza Boulevard, Suite 212, Cupertino, CA 95014

Phone: +1 408 579 2000, Fax: +1 408 579 2050

Email: info@interradesign.com Web: www.interradesign.com

© Interra Systems, Inc. All rights reserved.

