

Robust and field-tested, NOM is widely used in a wide range of applications,

including language translators, schematic generators, FPGA partitioning,

and front-end to auto place and route tools.

NOM is available on Solaris, HP-Unix, Linux, and Windows platforms.

NOM

The Language Independent Netlist Object Model

Highlights

 Preserves design hierarchy

 Readers and writers for

Verilog, VHDL, and EDIF 200

 Intuitive API for language

independent front-end

development

 Language-independent

expression support

 API functions to access,

modify, and delete nodes on

the netlist

 Support for RTL and

behavioral constructs

 User controlled, fully

instantiated tree available

 Binary dump and restore

capabilities

 Customizable error handling

 Optimized for memory usage

and runtime performance

 Support for preserving or

flattening design hierarchy in

a netlist

 Efficient and memory optimal

data structures to represent

bus based designs

 High run time performance

while working with large

vector based designs

Interra’s Netlist Object Model (NOM) provides EDA tool developers with

a language independent front-end for netlist-based applications.

Supporting Verilog, VHDL, and EDIF designs, NOM represents

connectivity information of a design at structural level. NOM’s

Application Program Interface (API) enables EDA applications to

traverse, access, and modify connectivity information.

NOM stores the connectivity information in a hierarchical, language-

independent object model. NOM’s interface hides language-specific

details from an application program and provides a unified view of any

netlist description through a common API. The API provides intuitive

functions to access and modify the in-memory object model. NOM can

be easily extended, allowing users to build on the existing capabilities

to meet application-specific requirements from a netlist

representation.

Key Advantages

 Language independent object model

 Support for Verilog, VHDL, and EDIF 200

 Backed by Interra’s field-proven expertise in

developing VHDL and Verilog front-ends

 Comprehensive coverage of language constructs

 Comprehensive validation of syntax and
semantics

TM

Readers and Writers for Verilog, VHDL, and

EDIF

Readers and writers for the standard netlist formats -

Verilog, VHDL, and EDIF 200, are available as off-the

shelf objects. The readers incorporate the widely

accepted HDL language analyzers from Interra. The

writers are customizable to application-specific

requirements. With readily available front-ends, you can

concentrate on your core competencies, without having

to bother with language interfaces and compliance.

Dynamic Object Model

NOM provides a complete set of access functions for

retrieval of the netlist data from the in-memory object

model. The API supports a rich complement of

functions for search and traversal of the netlist

hierarchy. In addition, NOM provides a complete set of

APIs for creation, modification, and deletion of netlist

components. The API functions enable you to

dynamically change the netlist during application

runtime. You can even use API functions to populate

NOM for proprietary netlist and formats.

Support for Expressions

NOM supports expression in a language-independent

manner. Various expression classes - unary, binary,

range selects, concatenations, conditional operators,

and constants provide you with sufficient functionality

to write real-world application programs using NOM.

Binary Dump and Restore Mechanism

NOM provides real time dump and restore mechanism.

You use NOM API to dump the object model to a binary

file or restore a binary dump to the memory. You can

either dump a part of the object model or the complete

object model. The dump and restore mechanism is

useful for fast loading of previously read netlists, for

quick netlist interchange between application

programs, or to reduce the peak memory consumption.

The dump and restore mechanism uses compression

methods to generate small dump files.

Fully Instantiated Object Model

NOM API enables you to control generation of either a

hierarchical or a fully instantiated object model. If you

choose to generate the fully instantiated tree view, you

can traverse fully instantiated networks using API

functions.

RTL and Behavioral Constructs

NOM API functions enable you to anticipate RTL and

behavioral representation in your applications.

Although a netlist is a structural-level representation of

a design, NOM supports RTL and behavioral constructs

in a limited way. NOM retains the expressions and

models in a language independent manner. In addition,

NOM also stores continuous assignments of Verilog,

and concurrent signal assignments of VHDL.

Constructs that are not supported by NOM are

converted into black boxes and incorporated in the

netlist, such as always blocks of Verilog and process

blocks of VHDL.

Customization of Errors

You can customize information, warning, and error

messages to the needs of your application. You can

enable or disable messages, change message formats,

modify message severity, and even add new messages.

Optimized for Performance

NOM is designed to optimize memory usage, ensure

low memory footprint, and result in high performance

of frequently used functions.

Many of today's advanced designs mostly deal with

vectors like buses. There is a lesser need to access the

individual bits. For such designs, when not required,

NOM is capable of preserving the vector property

without creating individual bit components. This

ensures substantial gain in terms of high performance

and low memory footprint.

Object Oriented Design

NOM is designed using object oriented modeling

techniques. The object oriented design makes the data

structures easy to learn and intuitive to use.

The NOM Features

Interra Systems, Inc.

1601 S. De Anza Boulevard, Suite 212, Cupertino, CA 95014

Phone: +1 408 579 2000, Fax: +1 408 579 2050

Email: info@interradesign.com Web: www.interradesign.com

© Interra Systems, Inc. All rights reserved.

