
 Beacon-VHDL-2008
Comprehensive Test Suite for VHDL-2008 Compliance

Addressing the needs of EDA tool developers to
quickly evaluate the quality of their products, Interra’s
Beacon-VHDL-2008 delivers a comprehensive test suite
based on VHDL IEEE 1076-2008 standards.

You can use Beacon-VHDL-2008 to characterize EDA
tools for coverage and quality across various language
constructs and styles.

Enabling you to discover language and RTL non-
compliance early in the product development and
testing life cycle, Beacon-VHDL-2008 offers:

 Reduced development costs and time-to-market EDA
products

 Development of standard-based products

 Precise evaluation of bugs and errors in the product

 Measure of product quality

 Unbiased feedback on product quality

 Regression tests for quality assurance

The test cases and test benches can be applied to the
EDA tool under evaluation and results can be
compared with golden reference that is provided with
Beacon-VHDL-2008.

Beacon
Test Suite

EDA Tool
Un der Test

Test Case

Comparison of
test output with
reference golden

Reference
Golden

Test Output

Pass

Output is
VHDL RTL
Compliant

Fail

Output violates
VHDL RTL
Compliance

Key Advantages

 Backed by Interra’s field-proven
expertise in developing HDL-
based test suites for VHDL and
Verilog

 Developed in partnership with
significant EDA majors

 Conforming to accepted
definition and interpretation of
the language

 Providing an unbiased quality
analysis of EDA tools

 Some partial and some complete
coverage of each of new
construct and styles

 Comprehensive validation of
syntax, synthesizability, and
simulation semantics

Highlights

 Over 2500 test cases along with
test benches

 Golden output for comparison

 Detailed test plans with cross-
reference to test cases

 Well organized test cases
highlighting testing objectives

 Both positive and negative test
cases

The Beacon-VHDL-2008
Features
Comprehensive Test Suite
Well organized test plan of synthesizable and non-
synthesizable test cases. It also enables you to evaluate
syntax, semantics, and simulation aspects of a
VHDL-2008 based tool.

Syntax and Semantics Cover
Includes over 2,500 test cases that cover constructs and styles.

Language Construct Number of Test Cases

 Design Entity and Configuration 179

Concurrent Statement 290

Declaration 384

Combined Construct 43

Design Unit 36

Expressions 738

Lexical Elements 141

Names 205

Predefined Language 304

PSL 14

ScopeAndVisibility 25

Sequential Statement 369

Specifications 18

Subprogram and Package 232

Tool Directive 33

Total 3218

Test Case Covered

Positive test cases with test benches and Negative test
cases,Most of the new constructs of VHDL-2008 has
been covered, some construct partially and some
construct fully.

Well Documented Test Plans

The test plans describe all test objectives and are
categorized by sections. Each test case has a
reference to the section number of the test plan.

Test Benches and Golden Reference

Provides test benches to instantiate test cases and
apply vectors on inputs. Outputs are captured after
an appropriate interval and written on to a file. You
can easily apply the test bench to the test tool and
compare the outputs.

Sample Test Case

--** Purpose: External signal name : The
external path is a package path
name : Use external name as a
prefix : In an expression.

--** LRM : Sections 8.7
--** TestPlan: Sections 6.2.2.1.1.1.1
--** Kind : Semantic
--** Status: SIMULATION_SHOULD_PASS

*
package pack is
 signal s1 : bit_vector(0 to 7) :=
“10110011”;
 signal s2 : bit_vector(0 to 7) := (others
=> '1');
end package pack;

entity packPathName1 is
 port(in1,in2 : in bit_vector(0 to 7);
 out1 : out bit_vector(0-to 7));
end entity packPathName1;

architecture arch of packPathName1 is
begin
 process(<< signal @work.pack.s2 :
bit_vector(0 to 7)>>, in2)
 begin
 for idx in 0 to 7 loop
 if idx mod 2 = 1 then
 out1(idx) <=
 << signal @work.pack.s1 :
 bit_vector(0 to 7)>>(idx) or
 << signal @work.pack.s2 :
 bit_vector(0 to 7)>>(idx);
 else
 ...
 end if;
 end loop;
 end process;
end architecture arch;

Interra Systems, Inc.
20195 Stevens Creek Boulevard, Suite 250, Cupertino, CA 95014
Phone: +1 408 873 1212, Fax: +1 408 873 1211
Email: info@interrasystems.com Web: www.interrasystems.com © Interra Systems, Inc. All rights reserved.

VHPI (VHDL Programming interface) 30

Types 177

